vector_func.py 1.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. from flask import Flask, request, jsonify
  2. import os
  3. from urllib.request import urlretrieve
  4. import time
  5. from image_search import ImageSearchEngine
  6. app = Flask(__name__)
  7. # 配置常量
  8. UPLOAD_FOLDER = 'static/images'
  9. ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif', 'bmp'}
  10. # 搜索参数默认值
  11. TOP_K = 5 # 默认返回的最大结果数
  12. MIN_SCORE = 0.0 # 默认最小相似度分数
  13. MAX_SCORE = 100.0 # 默认最大相似度分数
  14. os.makedirs(UPLOAD_FOLDER, exist_ok=True)
  15. # 初始化图像搜索引擎
  16. search_engine = ImageSearchEngine()
  17. @app.route("/", methods=["POST"])
  18. def invoke():
  19. """处理图片上传请求"""
  20. try:
  21. # 获取并验证参数
  22. data = request.get_json()
  23. if not data:
  24. return jsonify({'error': '请求必须包含JSON数据'}), 400
  25. print(f"Received data: {data}")
  26. image_url = data.get('url')
  27. time_base = str(time.time() * 1000)
  28. image_path = os.path.join(UPLOAD_FOLDER, time_base + os.path.basename(image_url))
  29. urlretrieve(image_url, image_path)
  30. start_time = time.time()
  31. vector = search_engine._process_image(image_path)
  32. os.remove(image_path)
  33. return jsonify({"vector_spend_time": time.time() - start_time,"vector": vector.tolist()}),200
  34. except Exception as e:
  35. return jsonify({'error': str(e)}), 500
  36. if __name__ == '__main__':
  37. app.run(host='0.0.0.0', port=5001, debug=False)